Engineering Data/Models VXMC 10 Do not use for construction. Refer to factory certified dimensions. This brochure includes data current at the time of publication which should be reconfirmed at the time of purchase. | | A PLANT OF | | | | FAN | | | | REMOTE SUMP | | 70 | | |--|--|--|--|--|----------------------------|----------------------------------|--|----------------------------------|----------------------------|--|--|------------------------------------| | MODEL NO. | APPROX.
SHPG.
WEIGHT | APPROX.
OPER.
WEIGHT | HEAVIEST
SECTION
(COIL) | CFM | MOTOR
HP
(0" ESP) | GPM | PUMP
Motor
HP | R-717
CHARGE
(LBS.) | BOTTOM
DRAIN
SIZE | APPROX.
OPER.
WEIGHT | F | Н | | VXMC 10
VXMC 15
VXMC 20
VXMC 25 | 1070
1260
1420
1470 | 1380
1580
1760
1810 | 1070*
850
1000
1050 | 2900
3800
4400
5300 | 1/3
3/4
1
2 | 35
35
35
35 | 1/3
1/3
1/3
1/3 | 19
25
32
34 | 2½
2½
2½
2½
2½ | 1140
1340
1520
1570 | 15¾
25¼
34¾
34¾ | 80%
90%
99%
99% | | VXMC 30
VXMC 38
VXMC 46
VXMC 51
VXMC 57
VXMC 65 | 1850
2100
2390
2440
2700
2770 | 2550
2810
3130
3180
3480
3550 | 1120
1350
1650
1700
1940
2010 | 8200
8900
8500
10000
9600
11600 | 2
2
2
3
3
5 | 75
75
75
75
75
75 | 1/2
1/2
1/2
1/2
1/2
1/2 | 35
45
61
65
76
80 | 3
3
3
3
3 | 2090
2350
2670
2720
3020
3090 | 14¾
24¼
33¾
33¾
43¼
43¼
43¼ | 89%
99%
108%
108%
118% | | VXMC 71
VXMC 80
VXMC 90 | 3670
3740
4160 | 4980
5050
5270 | 2400
2470
2850 | 12100
14500
14000 | 3
5
5 | 115
115
115 | 3/4
3/4
3/4 | 90
100
110 | 4
4
4 | 4230
4300
4520 | 37¾
37¾
48¼ | 1217/8
1217/8
1323/8 | | VXMC 100
VXMC 110
VXMC 125 | 4600
4680
5230 | 6370
6450
7060 | 3060
3140
3640 | 19600
22000
21000 | 5
7½
7½
7½ | 150
150
150 | 1
1
1 | 120
130
145 | 6
6
6 | 5360
5440
6050 | 37¾
37¾
48¼ | 121%
121%
132% | | VXMC 138
VXMC 150
VXMC 170 | 7130
7220
8120 | 8920
9010
9930 | 4920
5830
5930 | 25900
28300
28000 | 5
7½
7½ | 220
220
220 | 1½
1½
1½ | 170
190
210 | 6
6
6 | 7510
7590
8510 | 37¾
37¾
48¼ | 1337/8
1337/8
1443/8 | | VXMC N195
VXMC N215
VXMC N235 | | 13540
14840
14970 | 6580
7810
7950 | 40000
37900
42300 | 7½
7½
10 | 305
305
305 | 3
3
3 | 240
295
320 | 6
6
6 | 11100
12400
12530 | 37¾
48¼
48¼
48¼ | 145%
156%
156% | | VXMC N265
VXMC N285
VXMC N315
VXMC N345 | 15360
17160 | 20790
20920
22790
22980 | 10180
10320
12060
12270 | 54800
58600
56000
61700 | 7½
10
10
15 | 460
460
460
460 | 5
5
5
5 | 360
390
440
470 | 8
8
8 | 17070
17200
19070
19270 | 37 ³ / ₄
37 ³ / ₄
48 ¹ / ₄
48 ¹ / ₄ | 157%
157%
168%
168% | ^{*} Unit normally ships in one piece. ## **Engineering Data / Models VXC 10** Do not use for construction. Refer to factory certified dimensions. This brochure includes data current at the time of publication which should be reconfirmed at the time of purchase. ** See Note 2 Models VXC N205-N400 ## Selection Two methods of selection are presented in this section, the heat rejection method shown on these two pages, and the evaporator ton method shown on Pages 14 and 15. Selections may be made from the heat rejection method for any type of positive displacement compressor: open reciprocating, hermetic reciprocating, or rotary screw. The evaporator ton method is based on evaporator heat input only, and is limited to systems utilizing open reciprocating compressors. **Heat Rejection Method** In a mechanical refrigeration system, the function of an evaporative condenser is to reject heat to the environment. The heat to be rejected is the sum of the heat input at the evaporator and the energy input at the compressor. For a given set of operating conditions, the energy input through the compression process can vary for the several types of compressors—centrifugal, rotary screw, open reciprocating, and hermetic reciprocating. Therefore, in order to accurately determine the proper evaporative condenser required, it is necessary to establish the compressor energy input as well as the heat absorbed in the evaporator. Frequently the total heat rejection of a system is specified. When it is not specified, it can be readily calculated. Total heat rejection is the sum of the compressor evaporator capacity in BTUH at the specified operating conditions, and the energy corresponding to the compressor brake horse-power in BTUH. For open compressors: Total heat rejection = Compressor evaporator capacity (BTUH) + Compressor BHP \times 2545 TABLE 1 – Base Heat Rejection – Model VXC (MBH — THOUSANDS OF BTU'S PER HOUR) | MODEL NO.
VXC | HEAT
REJECTION
MBH | MODEL NO.
VXC | HEAT
REJECTION
MBH | MODEL NO.
VXC | HEAT
REJECTION
MBH | |------------------|--------------------------|------------------|--------------------------|------------------|--------------------------| | 10 | 147.0 | 185 | 2,719.5 | 590 | 8,673.0 | | 15 | 220.5 | N205 | 3,013.5 | N600 | 8,820.0 | | 20 | 294.0 | N230 | 3,381.0 | 620 | 9,114.0 | | 25 | 367.5 | N250 | 3,675.0 | 650/N650 | 9,555.0 | | 30 | 441.0 | N275 | 4,042.5 | 680 | 9,996.0 | | 38 | 558.6 | N300 | 4,410.0 | 720/N720 | 10,584.0 | | 46 | 676.2 | 320 | 4,704.0 | 760/N760 | 11,172.0 | | 52 | 764.4 | N325 | 4,777.5 | N800 | 11,760.0 | | 58 | 852.6 | 340 | 4,998.0 | 840 | 12,348.0 | | 65 | 955.5 | 360/N360 | 5,292.0 | 900 | 13,230.0 | | 72 | 1,058.4 | 380/N380 | 5,586.0 | 980 | 14,406.0 | | 80 | 1,176.0 | N400 | 5,880.0 | 1060 | 15,582.0 | | 90 | 1,323.0 | 420 | 6,174.0 | 1100 | 16,170.0 | | 100 | 1,470.0 | 450 | 6,615.0 | 1180 | 17,346.0 | | 110 | 1,617.0 | N460 | 6,762.0 | 1240 | 18,228.0 | | 125 | 1,837.5 | 490 | 7,203.0 | 1300 | 19,110.0 | | 135 | 1,984.5 | N500 | 7,350.0 | 1360 | 20,000.0 | | 150 | 2,205.0 | 530 | 7,791.0 | | | | 165 | 2,425.5 | 550/N550 | 8,085.0 | *- | 200-110 | For multi-stage open compressor systems, total heat rejection is calculated from the *high stage* compressor capacity and brake horsepower, expressed in BTUH. In the case of hermetic compressors, compressor input is commonly expressed in KW and must be converted to BTUH: The base heat rejection of each Baltimore Aircoil evaporative condenser is shown in Tables 1 and 2. This represents the total heat rejection of each unit when operating at 105°F condensing temperature and 78°F wet bulb temperature, using refrigerants R-12, R-22, R-500, or R-502. Tables 3 and 4 present correction factors to be applied to the system heat rejection for other operating conditions of condensing temperature, wet bulb temperature, and refrigerant. VXC and VXMC units which have the letter "N" preceeding the model number have a maximum width of eight (8) feet at the base. Units which do not have the letter "N", and have model numbers greater than 185, are ten (10) feet wide at the base. ## **Selection Procedure** - 1. Establish total heat rejection required by the system (See above). - 2. Determine the refrigerant and design conditions for condensing temperature and wet bulb temperature. - 3. Using the appropriate factor (Tables 3 and 4) for the proper refrigerant, determine the correction factor to be applied to the system heat rejection. - 4. Multiply the correction factor by the total system heat rejection. TABLE 2 – Base Heat Rejection – Model VXMC (MBH — THOUSANDS OF BTU'S PER HOUR) | MODEL NO.
VXMC | HEAT
REJECTION
MBH | MODEL NO.
VXMC | HEAT
REJECTION
MBH | MODEL NO.
VXMC | HEAT
REJECTION
MBH | |-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------| | 10 | 147.0 | 150 | 2,205.0 | N530 | 7,791.0 | | 15 | 220.5 | 170 | 2,499.0 | 560 | 8,232.0 | | 20 | 294.0 | N195 | 2,866.5 | N570 | 8,379.0 | | 25 | 367.5 | N215 | 3,160.5 | 585 | 8,599.5 | | 30 | 441.0 | N235 | 3,454.5 | 600 | 8,820.0 | | 38 | 558.6 | N265 | 3,895.5 | 620 | 9,114.0 | | 46 | 676.2 | N285 | 4,189.5 | N630 | 9,261.0 | | 51 * | 749.7 | 300 | 4,410.0 | 680 | 9,996.0 | | 57 | 837.9 | N315 | 4,630.5 | N690 | 10,143.0 | | 65 | 955.5 | 340 | 4,998.0 | 760 | 11,172.0 | | 71 | 1,043.7 | N345 | 5,071.5 | 860 | 12,642.0 | | 80 | 1,176.0 | 380 | 5,586.0 | 920 | 13,524.0 | | 90 | 1.323.0 | N390 | 5,733.0 | 1020 | 14,994.0 | | 100 | 1,470.0 | 430/N430 | 6,321.0 | 1120 | 16,464.0 | | 110 | 1,617.0 | 460 | 6,762.0 | 1170 | 17,199.0 | | 125 | 1,837.5 | N470 | 6,909.0 | 1240 | 18,228.0 | | 138 | 2,028.6 | 510 | 7,497.0 | | |